



# **HTM2500LF**

# Temperature and Relative Humidity Module

# **SPECIFICATIONS**

- Hermetic Housing
- Humidity calibrated within +/-2% @55%RH
- Temperature measurement through NTC 10kOhms
   +/-1% direct output
- Small size product
- Typical 1 to 4 Volt DC output for 0 to 100%RH at 5Vdc

Based on the rugged HTS2035SMD humidity / temperature sensor, HTM2500LF is a dedicated humidity and temperature transducer designed for OEM applications where a reliable and accurate measurement is needed. Direct interface with a microcontroller is made possible with the module's humidity linear voltage output.

### **FEATURES**

- Full interchangeability
- High reliability and long term stability
- Not affected by water immersion
- Ratiometric to voltage supply
- Suitable for 3 to 10 Vdc supply voltage

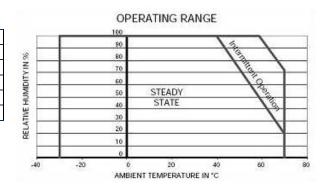
#### **Humidity Sensor Specific Features**

- Instantaneous de-saturation after long periods in saturation phase
- Fast response time
- High resistance to chemicals
- · Patented solid polymer structure

#### Temperature Sensor Specific Features

- Stable
- High sensitivity

# **APPLICATIONS**


- Industrial
- Process control
- Hygrostat
- Data logger

# APPLICATIONSPERFORMANCE SPECS

# **MAXIMUM RATINGS**

| Ratings                     | Symbol | Value     | Unit |
|-----------------------------|--------|-----------|------|
| Storage Temperature         | Tstg   | -40 to 85 | °C   |
| Storage Humidity            | RHstg  | 0 to 100  | % RH |
| Supply Voltage (Peak)       | Vs     | 12        | Vdc  |
| Humidity Operating Range    | RH     | 0 to 100  | % RH |
| Temperature Operating Range | Ta     | -40 to 85 | °C   |

Peak conditions: less than 10% of the operating time



# **ELECTRICAL CHARACTERISTICS**

(Ta=23°C, Vs=5Vdc +/-5%,  $R_L$ >1M $\Omega$  unless otherwise stated)

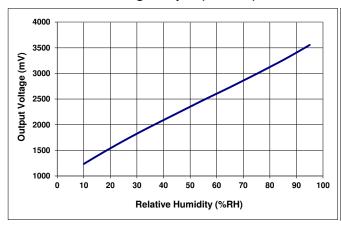
| Humidity Characteristics                                  | Symbol    | Min  | Тур    | Max  | Unit   |
|-----------------------------------------------------------|-----------|------|--------|------|--------|
| Humidity Measuring Range                                  | RH        | 1    |        | 99   | %RH    |
| Relative Humidity Accuracy (10 to 95% RH)                 | RH        |      | +/-3   | +/-5 | %RH    |
| Supply Voltage                                            | Vs        | 4.75 | 5.00   | 5.25 | Vdc    |
| Nominal Output @55%RH (at 5Vdc)                           | Vout      | 2.42 | 2.48   | 2.54 | V      |
| Current consumption                                       | lc        |      | 1.0    | 1.2  | mA     |
| Temperature Coefficient (10 to 50°C)                      | Tcc       |      | +0.1   |      | %RH/°C |
| Average Sensitivity from 33% to 75%RH                     | ΔVout/ΔRH |      | +26    |      | mV/%RH |
| Sink Current Capability (R <sub>L</sub> =15kΩ)            | ls        |      |        | 300  | μΑ     |
| Recovery time after 150 hours of condensation             | tr        |      | 10     |      | S      |
| Humidity Hysteresis                                       |           |      | +/-1.5 |      | %RH    |
| Long term stability                                       | Т         |      | +/-0.5 |      | %RH/yr |
| Time Constant (at 63% of signal, static) 33% to 76%RH (1) | τ         |      | 5      |      | S      |
| Output Impedance                                          | Z         |      | 70     |      | Ω      |

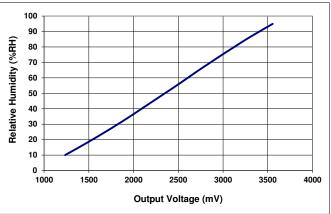
<sup>(1)</sup> At 1m/s air flow

### (Ta=25°C)

| Temperature Characteristics        | Symbol         | Min  | Тур  | Max  | Unit |
|------------------------------------|----------------|------|------|------|------|
| Nominal Resistance @25°C           | R              |      | 10   |      | kΩ   |
| Beta value: B25/50                 | β              | 3347 | 3380 | 3413 | K    |
| Temperature Measuring Range*       | Ta             | -40  |      | 85   | °C   |
| Nominal Resistance Tolerance @25°C | R <sub>N</sub> |      |      | 1    | %    |
| Beta Value Tolerance               | β              |      | 1    |      | %    |
| Response Time                      | τ              |      | 10   |      | S    |

<sup>\*</sup> For temperature upper than 60°C, specific high temperature cable is required: HTM2500LFL products


# TYPICAL PERFORMANCE CURVES


#### **HUMIDITY SENSOR**

Typical response look-up table (Vs = 5V)

| RH (%) | Vout (mV) | RH (%) | Vout (mV) |
|--------|-----------|--------|-----------|
| 10     | 1235      | 55     | 2480      |
|        |           |        |           |
| 15     | 1390      | 60     | 2605      |
| 20     | 1540      | 65     | 2730      |
| 25     | 1685      | 70     | 2860      |
| 30     | 1825      | 75     | 2990      |
| 35     | 1960      | 80     | 3125      |
| 40     | 2090      | 85     | 3260      |
| 45     | 2220      | 90     | 3405      |
| 50     | 2350      | 95     | 3555      |

### Modeled linear voltage output (Vs = 5V)



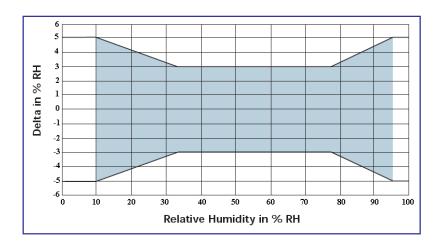


### **Linear Equations**

Vout = 26.65 \* RH + 1006 RH = 0.0375 \* Vout - 37.7 with Vout in mV and RH in %

# **Polynomial Equations**

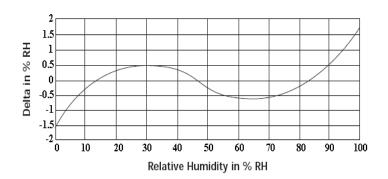
Vout =  $1.05E^{-3} * RH^3 - 1.76E^{-1} * RH^2 + 35.2 * RH + 898.6$ RH =  $-1.92E^{-9} * Vout^3 + 1.44E^{-5} * Vout^2 + 3.4E^{-3} * Vout - 12.4$ with Vout in mV and RH in %


#### **Measurement Conditions**

HTM2500LF is specified for accurate measurements within 10 to 95% RH.

Excursion out of this range (<10% or >95% RH, including condensation) does not affect the reliability of HTM2500LF characteristics.

# Error Budget at 23°C


### HTM2500LF Error Limits:



# Temperature coefficient compensation:

$$RH_{cor}\% = RH_{read}\% \times (1 - (T_a - 23) \times 2.4 E^{-3})$$

# **HTM2500LF Linearity Error:**



# Non-linearity and temperature compensation:

$$RH\% = \frac{-1.9206 \, E^{-9} V_{out}^{3} + 1.437 \, E^{-5} V_{out}^{2} + 3.421 E^{-3} V_{out} - 12.4}{1 + \left(T_{a} - 23\right) \times 2.4 \, E^{-3}}$$

with Vout in mV, RH in % and Ta in °C

#### HTM2500LF TEMPERATURE SENSOR: DIRECT NTC OUTPUT

### Typical temperature output

Depending on the needed temperature measurement range and associated accuracy, we suggest two methods to access to the NTC resistance values.

$$R_T = R_N \times e^{\beta \left(\frac{1}{T} - \frac{1}{T_N}\right)}$$

 $R_T$  NTC resistance in  $\Omega$  at temperature T in K

 $R_N$  NTC resistance in  $\Omega$  at rated temperature T in K

T, T<sub>N</sub> Temperature in K

β Beta value, material specific constant of NTC

e Base of natural logarithm (e=2.71828)

 $\odot$  The exponential relation only roughly describes the actual characteristic of an NTC thermistor can, however, as the material parameter  $\beta$  in reality also depend on temperature. So this approach is suitable for describing a restricted range around the rated temperature or resistance with sufficient accuracy.

② For practical applications, a more precise description of the real R/T curve may be required. Either more complicated approaches (e.g. the Steinhart-Hart equation) are used or the resistance/temperature relation as given in tabulation form. The below table has been experimentally determined with utmost accuracy for temperature increments of 1 degree.

Actual values may also be influenced by inherent self-heating properties of NTCs. Please refer to MEAS-France Application Note HPC106 "Low power NTC measurement".

#### Temperature look-up table

| Temp (°C) | R (Ω)  | Temp (°C) | R (Ω) |
|-----------|--------|-----------|-------|
| -40       | 195652 | 25        | 10000 |
| -35       | 148171 | 30        | 8315  |
| -30       | 113347 | 35        | 6948  |
| -25       | 87559  | 40        | 5834  |
| -20       | 68237  | 45        | 4917  |
| -15       | 53650  | 50        | 4161  |
| -10       | 42506  | 55        | 3535  |
| -5        | 33892  | 60        | 3014  |
| 0         | 27219  | 65        | 2586  |
| 5         | 22021  | 70        | 2228  |
| 10        | 17926  | 75        | 1925  |
| 15        | 14674  | 80        | 1669  |
| 20        | 12081  | 85        | 1452  |

#### Steinhart-Hart coefficients

According to the equation below, the Steinhart-Hart coefficients for the operating temperature range for HTM2500LF thermistor are:

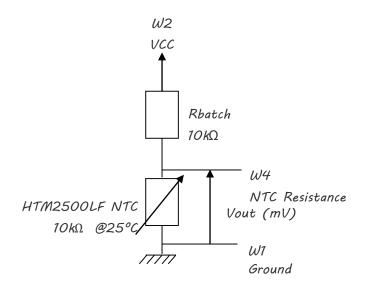
$$\frac{1}{T} = a + b * \ln(R) + C * \ln(R) * \ln(R) * \ln(R)$$

R NTC resistance in  $\Omega$  at temperature T in K

T Temperature in K

a Constant value (a = 8.54942E-04)

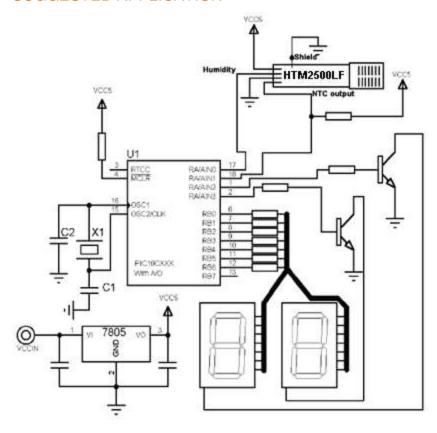
b Constant value (b = 2.57305E-04)


c Constant value (c = 1.65368E-07)

### • Temperature Interface Circuit

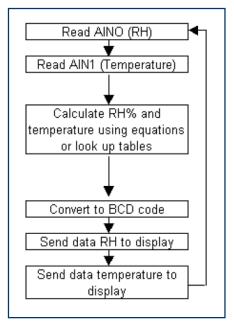
Concerning the temperature sensor of the HTM2500LF, the following measuring method described below is based on a voltage bridge divider circuit. It uses only one resistor component (Rbatch) at 1% to design HTM2500LF temperature sensor interfacing circuit.

Rbatch is chosen to be equal to NTC @25°C to get: Vout = Vcc/2 @25°C.


The proposal method connects Rbatch to Vcc (5Vdc) and NTC to Ground. It leads to a negative slope characteristic (Pull-Up Configuration).



| V = (mV) -                        | $\frac{Vcc(mV)*NTC_{HTM 2500LF}}{}$                | $(\Omega)$            |
|-----------------------------------|----------------------------------------------------|-----------------------|
| $\mathbf{v}_{OUT}(m\mathbf{v}) =$ | $\overline{R_{batch}(\Omega) + NTC_{HTM, 2500LF}}$ | $\overline{(\Omega)}$ |


| Temp (°C) | R (Ω)  | Pull-up Configuration<br>Vout (mV) |
|-----------|--------|------------------------------------|
| -40       | 195652 | 4757                               |
| -30       | 113347 | 4595                               |
| -20       | 68237  | 4361                               |
| -10       | 42506  | 4048                               |
| 0         | 27219  | 3657                               |
| 10        | 17926  | 3210                               |
| 20        | 12081  | 2736                               |
| 25        | 10000  | 2500                               |
| 30        | 8315   | 2270                               |
| 40        | 5834   | 1842                               |
| 50        | 4161   | 1469                               |
| 60        | 3014   | 1158                               |
| 70        | 2228   | 911                                |
| 80        | 1669   | 715                                |

# SUGGESTED APPLICATION

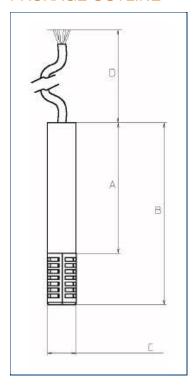


Steps of 1% RH are achievable by using 8-bit A/D.

If more resolution is required, a 10-bit A/D needs to be used and a third display will be added, giving steps of 0.2% RH.



# **QUALIFICATION PROCESS**


#### RESISTANCE TO PHYSICAL AND CHEMICAL STRESSES

- HTM2500LF has passed through qualification processes of MEAS-France including vibration, shock, storage, high temperature and humidity, ESD.
- Additional tests under harsh chemical conditions demonstrate good operation in presence of salt atmosphere, SO2 (0.5%, H2S (0.5%), 03, NOx, NO, CO, CO2, Softener, Soap, Toluene, acids (H2SO4, HNO3, HCI), HMDS, Insecticide, Cigarette smoke, this is not an exhaustive list.
- HTM2500LF is not light sensitive.

#### SPECIFIC PRECAUTIONS

- HTM2500LF is not protected against reversed polarity Check carefully when connecting the device.
- If you wish to use HTM2500LF in a chemical atmosphere not listed above, consult us.

# **PACKAGE OUTLINE**



| Dim                | Min (mm) | Max (mm) |
|--------------------|----------|----------|
| Α                  | 53       | 55       |
| В                  | 74.3     | 76.3     |
| С                  | 11.2     | 11.6     |
| D*<br>(HTM2500LF)  | 200      | 250      |
| D*<br>(HTM2500LFL) | 1450     | 1550     |

\*Specific length available on request

For operating temperature upper than 60°C, specific high

temperature cable is required (1500mm long)

| Wire | Cable Color<br>HTM2500LF | Cable Color<br>HTM2500LFL | Function                        |
|------|--------------------------|---------------------------|---------------------------------|
| W1   | Brown                    | Black                     | Ground                          |
| W2   | White                    | Orange                    | Supply Voltage                  |
| W3   | Yellow                   | Yellow                    | Humidity Voltage Output         |
| W4   | Green                    | Purple                    | Temperature Output (NTC Direct) |
| W5   | Black (thick)            | Black (thick)             | Shield                          |

HTM2500LF weight: 17.5g HTM2500LFL weight: 50g

HTM2500LF wire characteristics: AWG 24 for W1, W2, W3 and W4 / AWG 16 for W5 HTM2500LFL wire characteristics: AWG 24 for W1, W2, W3 and W4 / AWG 16 for W5

### ORDERING INFORMATION

HPP809A031: HTM2500LF

**HUMIDITY VOLTAGE OUTPUT + NTC (TEMPERATURE DIRECT OUTPUT)** 

HPP809A033: HTM2500LFL

**HUMIDITY VOLTAGE OUTPUT + NTC (TEMPERATURE DIRECT OUTPUT) WITH LONG CABLE** 

(MULTIPLE PACKAGE QUANTITY OF 10 PIECES)

#### **EUROPE**

Measurement Specialties, Inc - MEAS France Impasse Jeanne Benozzi CS 83 163 31027 Toulouse Cedex 3 FRANCE

Tél: +33 (0)5 820 822 02 Fax: +33(0)5 820 821 51

Sales: humidity.sales@meas-spec.com

#### TE.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2015 TE Connectivity Ltd. family of companies All Rights Reserved.